Step Functions
AWS Step Functions provides serverless workflow orchestration for coordinating distributed applications. In the MBC CQRS Serverless framework, Step Functions are used for:
- Long-running workflow orchestration
- Saga pattern implementation for distributed transactions
- Parallel batch processing with Distributed Map
- Asynchronous task coordination with callback patterns
Architecture Overview
State Machines
The framework provides three pre-configured state machines:
Command State Machine
Handles data synchronization workflows with version control and parallel processing.
Key features:
- Version checking: Ensures command ordering and prevents conflicts
- Async callback: Waits for previous commands using task tokens
- Parallel sync: Uses Map state to sync data across multiple targets
- TTL management: Automatically sets expiration on records
Task State Machine
Executes parallel sub-tasks with controlled concurrency.
Key features:
- Controlled concurrency: Limits parallel executions (default: 2)
- Status tracking: Real-time task status updates
- Error handling: Automatic failure detection and reporting
Import CSV State Machine
Processes large CSV files using AWS Distributed Map for massive parallelism.
Key features:
- S3 native integration: Reads CSV directly from S3
- Batch processing: Groups rows for efficient processing
- High concurrency: Supports up to 50 concurrent batch processors
- EXPRESS execution: Uses express workflows for child state machines
System Configuration Example
The following diagram shows how Step Functions integrate with other AWS services in a typical production environment:
Data Flow Example
Here is a typical data flow for a command execution with Step Functions:
CDK Implementation Examples
Complete Command State Machine
The following CDK code shows how to create a complete command handler state machine:
import * as cdk from 'aws-cdk-lib';
import * as sfn from 'aws-cdk-lib/aws-stepfunctions';
import * as tasks from 'aws-cdk-lib/aws-stepfunctions-tasks';
import * as lambda from 'aws-cdk-lib/aws-lambda';
import * as logs from 'aws-cdk-lib/aws-logs';
import { Construct } from 'constructs';
export class CommandStateMachineConstruct extends Construct {
public readonly stateMachine: sfn.StateMachine;
constructor(scope: Construct, id: string, props: { lambdaFunction: lambda.IFunction }) {
super(scope, id);
const { lambdaFunction } = props;
// Helper function to create Lambda invoke tasks
const createLambdaTask = (
stateName: string,
integrationPattern: sfn.IntegrationPattern = sfn.IntegrationPattern.REQUEST_RESPONSE
) => {
const payload: Record<string, any> = {
'source': 'step-function',
'context.$': '$$',
'input.$': '$',
};
// Add task token for callback pattern
if (integrationPattern === sfn.IntegrationPattern.WAIT_FOR_TASK_TOKEN) {
payload['taskToken'] = sfn.JsonPath.taskToken;
}
return new tasks.LambdaInvoke(this, stateName, {
lambdaFunction,
payload: sfn.TaskInput.fromObject(payload),
stateName,
outputPath: '$.Payload[0][0]',
integrationPattern,
retryOnServiceExceptions: true,
});
};
// Define states
const fail = new sfn.Fail(this, 'fail', {
stateName: 'fail',
causePath: '$.cause',
errorPath: '$.error',
});
const success = new sfn.Succeed(this, 'success', {
stateName: 'success',
});
// Create task states
const finish = createLambdaTask('finish').next(success);
const syncData = createLambdaTask('sync_data');
// Map state for parallel data sync
const syncDataAll = new sfn.Map(this, 'sync_data_all', {
stateName: 'sync_data_all',
maxConcurrency: 0, // Unlimited concurrency
itemsPath: sfn.JsonPath.stringAt('$'),
})
.itemProcessor(syncData)
.next(finish);
const transformData = createLambdaTask('transform_data').next(syncDataAll);
const historyCopy = createLambdaTask('history_copy').next(transformData);
const setTtlCommand = createLambdaTask('set_ttl_command').next(historyCopy);
// Callback pattern for waiting on previous command
const waitPrevCommand = createLambdaTask(
'wait_prev_command',
sfn.IntegrationPattern.WAIT_FOR_TASK_TOKEN
).next(setTtlCommand);
// Choice state for version checking
const checkVersionResult = new sfn.Choice(this, 'check_version_result', {
stateName: 'check_version_result',
})
.when(sfn.Condition.numberEquals('$.result', 0), setTtlCommand)
.when(sfn.Condition.numberEquals('$.result', 1), waitPrevCommand)
.when(sfn.Condition.numberEquals('$.result', -1), fail)
.otherwise(waitPrevCommand);
const checkVersion = createLambdaTask('check_version').next(checkVersionResult);
// Create log group
const logGroup = new logs.LogGroup(this, 'StateMachineLogGroup', {
logGroupName: '/aws/vendedlogs/states/command-handler-logs',
removalPolicy: cdk.RemovalPolicy.DESTROY,
retention: logs.RetentionDays.SIX_MONTHS,
});
// Create state machine
this.stateMachine = new sfn.StateMachine(this, 'CommandHandlerStateMachine', {
stateMachineName: 'command-handler',
comment: 'Handles command stream processing with version control',
definitionBody: sfn.DefinitionBody.fromChainable(checkVersion),
tracingEnabled: true,
logs: {
destination: logGroup,
level: sfn.LogLevel.ALL,
},
});
}
}
Task State Machine with Controlled Concurrency
export class TaskStateMachineConstruct extends Construct {
public readonly stateMachine: sfn.StateMachine;
constructor(scope: Construct, id: string, props: { lambdaFunction: lambda.IFunction }) {
super(scope, id);
const { lambdaFunction } = props;
// Iterator task for each item
const iteratorTask = new tasks.LambdaInvoke(this, 'iterator', {
lambdaFunction,
payload: sfn.TaskInput.fromObject({
'source': 'step-function',
'context.$': '$$',
'input.$': '$',
}),
stateName: 'iterator',
outputPath: '$.Payload[0][0]',
});
// Map state with concurrency limit
const mapState = new sfn.Map(this, 'TaskMapState', {
stateName: 'map_state',
maxConcurrency: 2, // Process 2 items at a time
inputPath: '$',
itemsPath: sfn.JsonPath.stringAt('$'),
}).itemProcessor(iteratorTask);
// Create log group
const logGroup = new logs.LogGroup(this, 'TaskLogGroup', {
logGroupName: '/aws/vendedlogs/states/task-handler-logs',
removalPolicy: cdk.RemovalPolicy.DESTROY,
retention: logs.RetentionDays.SIX_MONTHS,
});
// Create state machine
this.stateMachine = new sfn.StateMachine(this, 'TaskHandlerStateMachine', {
stateMachineName: 'task-handler',
comment: 'Handles parallel task execution with concurrency control',
definition: mapState,
timeout: cdk.Duration.minutes(15),
tracingEnabled: true,
logs: {
destination: logGroup,
level: sfn.LogLevel.ALL,
},
});
}
}
Distributed Map for CSV Import
For processing large CSV files, use Distributed Map which provides native S3 integration:
import { Map as SfnMap, ProcessorMode, ProcessorConfig, IChainable, JsonPath } from 'aws-cdk-lib/aws-stepfunctions';
// Custom Distributed Map class for S3 CSV processing
export class DistributedMap extends SfnMap {
public itemReader?: DistributedMapItemReader;
public itemBatcher?: DistributedMapItemBatcher;
public label?: string;
public override toStateJson(): object {
const mapStateJson = super.toStateJson();
return {
...mapStateJson,
ItemReader: this.itemReader,
ItemBatcher: this.itemBatcher,
Label: this.label,
};
}
public itemProcessor(processor: IChainable, config: ProcessorConfig = {}): DistributedMap {
super.itemProcessor(processor, {
...config,
mode: ProcessorMode.DISTRIBUTED,
});
return this;
}
public setItemReader(itemReader: DistributedMapItemReader): DistributedMap {
this.itemReader = itemReader;
return this;
}
public setItemBatcher(itemBatcher: DistributedMapItemBatcher): DistributedMap {
this.itemBatcher = itemBatcher;
return this;
}
public setLabel(label: string): DistributedMap {
this.label = label;
return this;
}
}
// Usage in your stack
const csvRowsHandler = new tasks.LambdaInvoke(this, 'csv_rows_handler', {
lambdaFunction,
payload: sfn.TaskInput.fromObject({
'source': 'step-function',
'context.$': '$$',
'input.$': '$',
}),
stateName: 'csv_rows_handler',
});
const importCsvDefinition = new DistributedMap(this, 'import-csv', {
maxConcurrency: 50, // Process up to 50 batches in parallel
})
.setLabel('import-csv')
.setItemReader({
Resource: 'arn:aws:states:::s3:getObject',
ReaderConfig: {
InputType: 'CSV',
CSVHeaderLocation: 'FIRST_ROW',
},
Parameters: {
'Bucket.$': '$.bucket',
'Key.$': '$.key',
},
})
.setItemBatcher({
MaxInputBytesPerBatch: 10,
BatchInput: {
'Attributes.$': '$',
},
})
.itemProcessor(csvRowsHandler, {
executionType: sfn.ProcessorType.EXPRESS, // Use EXPRESS for child executions
});
const importCsvStateMachine = new sfn.StateMachine(this, 'ImportCsvStateMachine', {
stateMachineName: 'import-csv',
comment: 'Processes large CSV files with distributed batch processing',
definitionBody: sfn.DefinitionBody.fromChainable(importCsvDefinition),
tracingEnabled: true,
});
Event Source Configuration
Configure DynamoDB Streams and SQS to trigger Step Functions:
// DynamoDB Stream event source
const tableNames = ['tasks', 'commands', 'import_tmp'];
for (const tableName of tableNames) {
const table = dynamodb.Table.fromTableAttributes(this, `${tableName}-table`, {
tableArn: `arn:aws:dynamodb:${region}:${account}:table/${prefix}${tableName}`,
tableStreamArn: `arn:aws:dynamodb:${region}:${account}:table/${prefix}${tableName}/stream/*`,
});
lambdaFunction.addEventSource(
new lambdaEventSources.DynamoEventSource(table, {
startingPosition: lambda.StartingPosition.TRIM_HORIZON,
batchSize: 1,
filters: [
lambda.FilterCriteria.filter({
eventName: lambda.FilterRule.isEqual('INSERT'),
}),
],
})
);
}
// SQS event sources
const queues = ['task-action-queue', 'notification-queue', 'import-action-queue'];
for (const queueName of queues) {
const queue = sqs.Queue.fromQueueArn(
this,
queueName,
`arn:aws:sqs:${region}:${account}:${prefix}${queueName}`
);
lambdaFunction.addEventSource(
new lambdaEventSources.SqsEventSource(queue, {
batchSize: 1,
})
);
}
Implementation Guide
Step 1: Infrastructure Setup
The framework automatically provisions Step Functions infrastructure using AWS CDK. Key resources include:
// State machine definition in CDK
const commandStateMachine = new sfn.StateMachine(this, 'CommandHandler', {
stateMachineName: 'command',
definitionBody: sfn.DefinitionBody.fromChainable(definition),
timeout: Duration.minutes(15),
tracingEnabled: true,
logs: {
destination: logGroup,
level: sfn.LogLevel.ALL,
},
});
Step 2: Define Step Function Events
Create event classes that extend the base Step Function event:
import { IEvent } from '@mbc-cqrs-serverless/core';
import { StepFunctionsContext } from '@mbc-cqrs-serverless/core';
export class CustomWorkflowEvent implements IEvent {
source: string;
context: StepFunctionsContext;
input?: WorkflowInput;
taskToken?: string;
}
Step 3: Implement Event Handlers
Create handlers that process Step Function events:
import { EventHandler, IEventHandler } from '@mbc-cqrs-serverless/core';
import { Logger } from '@nestjs/common';
@EventHandler(CustomWorkflowEvent)
export class CustomWorkflowHandler implements IEventHandler<CustomWorkflowEvent> {
private readonly logger = new Logger(CustomWorkflowHandler.name);
async execute(event: CustomWorkflowEvent): Promise<StepStateOutput> {
const stateName = event.context.State.Name;
switch (stateName) {
case 'initialize':
return this.handleInitialize(event);
case 'process':
return this.handleProcess(event);
case 'finalize':
return this.handleFinalize(event);
default:
throw new Error(`Unknown state: ${stateName}`);
}
}
private async handleInitialize(event: CustomWorkflowEvent) {
// Initialization logic
return { status: 'initialized', data: event.input };
}
private async handleProcess(event: CustomWorkflowEvent) {
// Processing logic
return { status: 'processed' };
}
private async handleFinalize(event: CustomWorkflowEvent) {
// Finalization logic
return { status: 'completed' };
}
}
Step 4: Configure Event Factory
Register your Step Function events in the event factory:
import { EventFactory, IEvent, StepFunctionsEvent } from '@mbc-cqrs-serverless/core';
@EventFactory()
export class CustomEventFactory {
async transformStepFunction(event: StepFunctionsEvent<any>): Promise<IEvent[]> {
const stateMachineName = event.context.StateMachine.Name;
if (stateMachineName.includes('custom-workflow')) {
return [new CustomWorkflowEvent(event)];
}
return [];
}
}
Step 5: Trigger State Machine Execution
Start a state machine execution from your service:
import { StepFunctionService } from '@mbc-cqrs-serverless/core';
import { Injectable } from '@nestjs/common';
@Injectable()
export class WorkflowService {
constructor(private readonly sfnService: StepFunctionService) {}
async startWorkflow(input: WorkflowInput): Promise<string> {
const executionArn = await this.sfnService.startExecution({
stateMachineArn: process.env.WORKFLOW_STATE_MACHINE_ARN,
input: JSON.stringify(input),
name: `workflow-${Date.now()}`,
});
return executionArn;
}
}
Use Cases
Use Case 1: Data Synchronization
Synchronize data across multiple tables with version control and conflict resolution.
Scenario: When a command is created, sync the data to multiple read models.
// Trigger: DynamoDB Stream INSERT event
// Flow: check_version -> set_ttl -> history_copy -> transform -> sync_all -> finish
await this.commandService.publishAsync(
{
pk: 'TENANT#tenant1',
sk: 'ORDER#order123',
id: 'order-uuid',
code: 'order123',
name: 'Order',
type: 'ORDER',
version: 1,
tenantCode: 'tenant1',
attributes: { status: 'confirmed', total: 1000 },
},
{ invokeContext },
);
// This triggers the command state machine automatically
Use Case 2: Batch Task Processing
Execute multiple related tasks in parallel with controlled concurrency.
Scenario: Process multiple items in a batch job with status tracking.
// Create tasks that will be processed by the task state machine
const items = [
{ itemId: 'item1', action: 'process' },
{ itemId: 'item2', action: 'process' },
{ itemId: 'item3', action: 'process' },
];
await this.taskService.createStepFunctionTask({
input: items,
taskType: 'batch-processor',
tenantCode: 'tenant1',
}, { invokeContext });
Use Case 3: Large-Scale CSV Import
Import millions of rows from CSV files with distributed processing.
Scenario: Import a large CSV file from S3 with validation and transformation.
// Trigger CSV import via API or direct invocation
await this.importService.createCsvImport({
s3Bucket: 'my-bucket',
s3Key: 'imports/data.csv',
tableName: 'products',
processingMode: ProcessingMode.STEP_FUNCTION,
});
// The import-csv state machine will:
// 1. Read CSV from S3
// 2. Batch rows (default: 10 per batch)
// 3. Process up to 50 batches concurrently
// 4. Transform and validate each row
// 5. Create import commands
Use Case 4: Async Callback Pattern
Wait for external events using task tokens.
Scenario: Wait for approval before proceeding with a workflow.
// In your state machine definition
{
"WaitForApproval": {
"Type": "Task",
"Resource": "arn:aws:states:::lambda:invoke.waitForTaskToken",
"Parameters": {
"FunctionName": "${LambdaFunction}",
"Payload": {
"taskToken.$": "$$.Task.Token",
"requestId.$": "$.requestId"
}
},
"Next": "ProcessApproval"
}
}
// In your handler, store the task token
async handleWaitForApproval(event: ApprovalEvent) {
await this.approvalService.createApprovalRequest({
requestId: event.input.requestId,
taskToken: event.taskToken, // Store for later callback
});
}
// When approval is received, resume the workflow
async approveRequest(requestId: string) {
const request = await this.approvalService.getRequest(requestId);
await this.sfnService.sendTaskSuccess({
taskToken: request.taskToken,
output: JSON.stringify({ approved: true }),
});
}
Callback Patterns with Task Tokens
The framework implements callback patterns using AWS Step Functions task tokens for coordinating long-running workflows and waiting for external events.
How Callback Patterns Work
When a Step Function state uses the WAIT_FOR_TASK_TOKEN integration pattern, the execution pauses until an external process sends a success or failure response with the task token.
StepFunctionService Implementation
The StepFunctionService provides methods for starting executions and resuming paused workflows:
import {
SFNClient,
SendTaskSuccessCommand,
StartExecutionCommand,
} from '@aws-sdk/client-sfn';
@Injectable()
export class StepFunctionService {
private readonly client: SFNClient;
constructor(private readonly config: ConfigService) {
this.client = new SFNClient({
endpoint: config.get<string>('SFN_ENDPOINT'),
region: config.get<string>('SFN_REGION'),
});
}
// Start a new state machine execution
startExecution(arn: string, input: any, name?: string) {
return this.client.send(
new StartExecutionCommand({
stateMachineArn: arn,
name: name && name.length <= 80 ? name : undefined,
input: JSON.stringify(input),
}),
);
}
// Resume a paused execution using task token
async resumeExecution(taskToken: string, output: any = {}) {
// Wrap output in the expected format for Lambda integration
const wrappedOutput = {
Payload: [[output]],
};
return await this.client.send(
new SendTaskSuccessCommand({
taskToken: taskToken,
output: JSON.stringify(wrappedOutput),
}),
);
}
}
Version-Based Command Chaining
The command state machine uses callback patterns to ensure commands are processed in version order:
// Wait for previous command to complete using task token
protected async waitConfirmToken(
event: DataSyncCommandSfnEvent,
): Promise<StepFunctionStateInput> {
// Store task token in DynamoDB for later callback
await this.commandService.updateTaskToken(event.commandKey, event.taskToken);
return {
result: {
token: event.taskToken,
},
};
}
// When a command finishes, check if next version is waiting
protected async checkNextToken(
event: DataSyncCommandSfnEvent,
): Promise<StepFunctionStateInput> {
const nextCommand = await this.commandService.getNextCommand(
event.commandKey,
);
if (!nextCommand) {
return null; // No next command, chain ends
}
if (nextCommand.taskToken) {
// Resume the waiting command
try {
await this.sfnService.resumeExecution(nextCommand.taskToken, {
result: 'resumed_by_prev_version',
prevVersion: event.commandRecord.version,
});
} catch (e) {
this.logger.warn(
`Could not resume command v${nextCommand.version}: ${e.message}`,
);
}
}
return null;
}
CDK Configuration for Callback Pattern
Configure the state to wait for task token in your CDK stack:
// Create a state that waits for callback
const waitPrevCommand = new tasks.LambdaInvoke(this, 'wait_prev_command', {
lambdaFunction,
payload: sfn.TaskInput.fromObject({
'input.$': '$',
'context.$': '$$',
'taskToken': sfn.JsonPath.taskToken, // Include task token in payload
}),
stateName: 'wait_prev_command',
outputPath: '$.Payload[0][0]',
// Use WAIT_FOR_TASK_TOKEN integration pattern
integrationPattern: sfn.IntegrationPattern.WAIT_FOR_TASK_TOKEN,
});
Long-Running Workflow Strategies
The framework provides several strategies for handling long-running workflows:
ZIP Import Orchestration
For complex multi-file imports, the framework uses a hierarchical orchestration pattern:
Task Token Propagation for Child Workflows
When triggering child workflows, the parent stores the task token for later callback:
// Trigger a child CSV job and wait for completion
private async triggerSingleCsvJob(event: ZipImportSfnEvent) {
const s3Key = event.input?.s3Key || event.input;
const { taskToken } = event; // Task token from parent workflow
const { masterJobKey, parameters } = event.context.Execution.Input;
// Create CSV job with stored task token
await this.importService.createCsvJobWithTaskToken(
{
processingMode: ProcessingMode.STEP_FUNCTION,
bucket: parameters.bucket,
key: s3Key,
tenantCode: parameters.tenantCode,
tableName: tableName,
},
taskToken, // Store for callback when CSV processing completes
masterJobKey,
);
}
Workflow Timeout Configuration
Set appropriate timeouts for long-running workflows:
const taskStateMachine = new sfn.StateMachine(this, 'task-handler', {
stateMachineName: 'task-handler',
definition: sfnTaskMapState,
timeout: cdk.Duration.minutes(15), // Overall workflow timeout
tracingEnabled: true,
logs: {
destination: logGroup,
level: sfn.LogLevel.ALL,
},
});
Integration with Import/Export Patterns
The framework integrates Step Functions with the import module for scalable data processing:
CSV Import Flow
The CSV import uses a two-phase approach with Step Functions:
// Phase 1: Create import job and trigger Step Function
async handleCsvImport(
dto: CreateCsvImportDto,
options: ICommandOptions,
): Promise<ImportEntity[] | ImportEntity> {
if (dto.processingMode === 'DIRECT') {
// Process directly in Lambda (for small files)
return this._processCsvDirectly(dto, options);
} else {
// Create job and let Step Function handle processing
return this.createCsvJob(dto, options);
}
}
// Phase 2: Step Function handler processes rows
@EventHandler(CsvImportSfnEvent)
export class CsvImportSfnEventHandler {
async handleStepState(event: CsvImportSfnEvent): Promise<any> {
if (event.context.State.Name === 'csv_loader') {
// Count total rows and initialize job
const totalRows = await this.countCsvRows(input);
await this.importService.updateImportJob(parentKey, {
set: { totalRows },
});
return this.loadCsv(input);
}
if (event.context.State.Name === 'finalize_parent_job') {
return this.finalizeParentJob(event);
}
// Process batch of rows
const items = event.input.Items;
for (const item of items) {
const transformedData = await strategy.transform(item);
await strategy.validate(transformedData);
await this.importService.createImport(createImportDto, options);
}
}
}
Progress Tracking with Atomic Counters
The import service uses atomic DynamoDB counters for accurate progress tracking:
// Atomically increment progress counters
async incrementParentJobCounters(
parentKey: DetailKey,
childSucceeded: boolean,
): Promise<ImportEntity> {
const countersToIncrement: { [key: string]: number } = {
processedRows: 1,
};
if (childSucceeded) {
countersToIncrement.succeededRows = 1;
} else {
countersToIncrement.failedRows = 1;
}
// Use atomic update expression
const command = new UpdateItemCommand({
TableName: this.tableName,
Key: marshall(parentKey),
UpdateExpression: 'SET #processedRows = if_not_exists(#processedRows, :start) + :inc',
ExpressionAttributeNames: { '#processedRows': 'processedRows' },
ExpressionAttributeValues: marshall({ ':start': 0, ':inc': 1 }),
ReturnValues: 'ALL_NEW',
});
const response = await this.dynamoDbService.client.send(command);
const updatedEntity = unmarshall(response.Attributes) as ImportEntity;
// Check if job is complete and update final status
if (updatedEntity.totalRows > 0 && updatedEntity.processedRows >= updatedEntity.totalRows) {
const finalStatus = updatedEntity.failedRows > 0
? ImportStatusEnum.FAILED
: ImportStatusEnum.COMPLETED;
await this.updateStatus(parentKey, finalStatus);
}
return updatedEntity;
}
Processing Mode Selection
Choose the appropriate processing mode based on data size:
| Processing Mode | Use Case | Max Rows | Concurrency |
|---|---|---|---|
DIRECT | Small files, immediate feedback | ~1,000 | Single Lambda |
STEP_FUNCTION | Large files, background processing | Millions | Up to 50 |
// Example: Selecting processing mode based on file size
const processingMode = estimatedRows > 1000
? ProcessingMode.STEP_FUNCTION
: ProcessingMode.DIRECT;
await importService.handleCsvImport({
bucket: 'my-bucket',
key: 'data/large-file.csv',
tableName: 'products',
tenantCode: 'tenant1',
processingMode,
}, { invokeContext });
Step Functions Context
Every Step Function event includes context information about the execution:
interface StepFunctionsContext {
Execution: {
Id: string; // Execution ARN
Input: object; // Original input
Name: string; // Execution name
RoleArn: string; // IAM role
StartTime: string; // ISO timestamp
};
State: {
EnteredTime: string; // When this state started
Name: string; // Current state name
RetryCount: number; // Retry attempt number
};
StateMachine: {
Id: string; // State machine ARN
Name: string; // State machine name
};
}
Error Handling
Implement robust error handling in your state machines:
Handler-Level Error Handling
The framework provides built-in error handling patterns for Step Function handlers:
// Command event handler with status tracking and error handling
@Injectable()
export class CommandEventHandler {
async execute(
event: DataSyncCommandSfnEvent,
): Promise<StepFunctionStateInput | StepFunctionStateInput[]> {
// Update status to STARTED before processing
await this.commandService.updateStatus(
event.commandKey,
getCommandStatus(event.stepStateName, CommandStatus.STATUS_STARTED),
event.commandRecord.requestId,
);
try {
const ret = await this.handleStepState(event);
// Update status to FINISHED on success
await this.commandService.updateStatus(
event.commandKey,
getCommandStatus(event.stepStateName, CommandStatus.STATUS_FINISHED),
event.commandRecord.requestId,
);
return ret;
} catch (error) {
// Update status to FAILED and publish alarm on error
await this.commandService.updateStatus(
event.commandKey,
getCommandStatus(event.stepStateName, CommandStatus.STATUS_FAILED),
event.commandRecord.requestId,
);
await this.publishAlarm(event, (error as Error).stack);
throw error;
}
}
}
Task Error Handling with Continuation
For task handlers, the framework supports continuing execution even after errors:
// Task handler with error handling that allows workflow continuation
@EventHandler(StepFunctionTaskEvent)
export class TaskSfnEventHandler implements IEventHandler<StepFunctionTaskEvent> {
async execute(event: StepFunctionTaskEvent): Promise<any> {
const taskKey = event.taskKey;
try {
await this.taskService.updateSubTaskStatus(taskKey, TaskStatusEnum.PROCESSING);
const events = await this.eventFactory.transformStepFunctionTask(event);
const result = await Promise.all(
events.map((event) => this.eventBus.execute(event)),
);
// Update status to COMPLETED on success
await this.taskService.updateSubTaskStatus(taskKey, TaskStatusEnum.COMPLETED, {
result,
});
} catch (error) {
// Update status to FAILED and publish alarm, but don't throw
this.logger.error(error);
await Promise.all([
this.taskService.updateSubTaskStatus(taskKey, TaskStatusEnum.FAILED, {
error: (error as Error).stack,
}),
this.taskService.publishAlarm(event, (error as Error).stack),
]);
// Note: Error is not re-thrown to allow Step Function to continue
// throw error // Uncomment to fail the entire workflow on error
}
}
}
Alarm Publishing
The framework publishes alarms to SNS for monitoring and alerting:
// Publish alarm notification to SNS topic
async publishAlarm(
event: DataSyncCommandSfnEvent,
errorDetails: any,
): Promise<void> {
const alarm: INotification = {
action: 'sfn-alarm',
id: `${event.commandKey.pk}#${event.commandKey.sk}`,
table: this.options.tableName,
pk: event.commandKey.pk,
sk: event.commandKey.sk,
tenantCode: event.commandKey.pk.substring(
event.commandKey.pk.indexOf('#') + 1,
),
content: {
errorMessage: errorDetails,
sfnId: event.context.Execution.Id,
},
};
await this.snsService.publish<INotification>(alarm, this.alarmTopicArn);
}
State machine error handling configuration:
{
"ProcessStep": {
"Type": "Task",
"Resource": "${LambdaArn}",
"Retry": [
{
"ErrorEquals": ["States.TaskFailed"],
"IntervalSeconds": 2,
"MaxAttempts": 3,
"BackoffRate": 2
}
],
"Catch": [
{
"ErrorEquals": ["States.ALL"],
"Next": "HandleError",
"ResultPath": "$.error"
}
],
"Next": "NextStep"
}
}
Best Practices
Design Principles
- Idempotency: Design each state to be safely retryable
- Single Responsibility: Each state should do one thing well
- Timeout Configuration: Set appropriate timeouts for each state
- Logging: Enable comprehensive logging for debugging
Performance Optimization
- Use Express Workflows: For high-volume, short-duration workflows
- Batch Processing: Group items to reduce state transitions
- Concurrency Limits: Set appropriate limits to prevent throttling
- S3 Integration: Use native S3 integration for large data processing
Monitoring
- CloudWatch Metrics: Monitor execution counts, failures, and duration
- X-Ray Tracing: Enable distributed tracing for debugging
- CloudWatch Logs: Capture detailed execution logs
- Alarms: Set up alerts for failure rates and execution times
Related Documentation
- Task Module - Task management with Step Functions
- Import/Export Patterns - CSV import with Distributed Map
- Event Sourcing - Event-driven architecture
- CQRS Flow - Command and query separation